SUPPLEMENTAL TYPE CERTIFICATE

FAA APROVED SUPPLEMENT TO THE PILOT'S OPERATING HANDBOOK

CESSNA 172N N738BS

FAA APPROVED SUPPLEMENT TO THE PILOT'S OPERATING HANDBOOK AND FAA APPROVED AIRPLANE FLIGHT MANUAL

FOR

CESSNA MODELS 172N, S/N 17271035 THRU 17274009

REG. NO. N738BS

SER. NO. 17271405

This Supplement must be attached to the Pilot's Operating Handbook (POH) and FAA Approved Airplane Flight Manual when the aircraft is modified by the installation of an O-320-D series engine and the gross weight is increased to 2400 lbs in accordance with STC # SA1356GL . The information contained herein supplements or supersedes the basic manual only in those areas listed. For limitations, procedures and performance information not contained in this supplement, consult the basic POH and FAA Approved Airplane Flight Manual.

FAA APPROVED:

Donald P. Michal, Manager Chicago Aircraft

Certification Office FAA Central Region

DATE: MAR 0 1 1989

Page 1 of 11

Penn Yan Aero Service, Inc. 2499 Bath Road, Airport Penn Yan, NY 14527-9599 POH and AFM Supplement for Cessna 172N

SECTION I - General

DESCRIPTIVE DATA

A. Engine

Number of engines: 1 Engine Manufacturer: Textron Lycoming Engine Model: 0-320-D2J,-D2G, -D1A Horsepower Rating and Speed: 160 rated BHP at 2700 RPM

SECTION II - Limitations

A. The following placard must be displayed adjacent to the flap position selector switch:

MAXIMUM FLAP TRAVEL IS 300

B. C.G. Range

```
Landplane:

Normal category

Utility category

U
```

Straight line variation between points given.

SECTION III - Emergency Procedures - No Change.

SECTION IV - Normal Procedures - No Change.

SECTION V - Performance - See pages 3 thru 10.

SECTION VI - Weight and Balance - See Page 11.

FAA APPROVED DATE: MAR 0 1 1989

Page 2 of 11

CESSNA MODEL 172N Aircraft Modified Per Penn Yan STC 2400 1b. gross wt.

SECTION 5 PERFORMANCE

CRUISE

The cruising altitude should be selected based on a consideration of trip length, winds aloft, and the airplane's performance. A typical cruising altitude and the expected wind enroute have been given for this sample problem. However, the power setting selection for cruise must be determined based on several considerations. These include the cruise performance characteristics presented in figure 5-8, the range profile charts presented in figure 5-9, and the endurance profile charts presented in figure

The relationship between power and range is illustrated by the range profile charts. Considerable fuel savings and longer range result when lower power settings are used. For this sample problem, a cruise power of approximately 65% will be used.

The cruise performance chart, figure 5-8, is entered at 6000 feet altitude and 20°C above standard temperature. These values most nearly correspond to the planned altitude and expected temperature conditions. The engine speed chosen is 2500 RPM, which results in the following:

> Power True airspeed Cruise fuel flow

66% 112 Knots 7.4 GPH

The power computer may be used to determine power and fuel consumption more accurately during the flight.

FUEL REQUIRED

The total fuel requirement for the flight may be estimated using the performance information in figures 5-7 and 5-8. For this sample problem, figure 5-7 shows that a climb from 2000 feet to 6000 feet requires 1.6 gallons of fuel. The corresponding distance during the climb is 10 nautical miles. These values are for a standard temperature and are sufficiently accurate for most flight planning purposes. However, a further correction for the effect of temperature may be made as noted on the climb chart. The approximate effect of a non-standard temperature is to increase the time, fuel, and distance by 10% for each 10°C above standard temperature, due to the lower rate of climb. In this case, assuming a temperature 16°C above standard, the correction would be:

 $\frac{16^{\circ}\text{C}}{10^{\circ}\text{C}} \times 10\% = 16\%$ Increase

S ON 5 PERFORMANCE Aircraft Modified Per Penn Yan STC 2400 lb. gross wt. CESSNA MODEL 172N

With this factor included, the fuel estimate would be calculated as follows:

Fuel to climb, standard temperature

Increase due to non-standard temperature
(1.6 × 16%)

Corrected fuel to climb

1.6

0.3
1.9 Gallons

Using a similar procedure for the distance to climb results in 12 nautical miles.

The resultant cruise distance is:

Total distance Climb distance Cruise distance 320 -12

308 Nautical Miles

With an expected 10 knot headwind, the ground speed for cruise is predicted to be:

112 -10 102 Knots

Therefore, the time required for the cruise portion of the trip is:

308 Nautical Miles = 3.0 Hours 102 Knots

The fuel required for cruise is:

3.0 hours * 7.4 gallons/hour = 22.2 Gallons

A 45-minute reserve requires:

 $\frac{45}{60} \times 7.4$ gallons/hour = 5.6 Gallons

The total estimated fuel required is as follows:

Engine start, taxi, and takeoff 1.1
Climb 22.2
Cruise 22.2
Reserve 5.6
Total fuel required 30.8 Gallons

Once the flight is underway, ground speed checks will provide a more ate basis for estimating the time enroute and the corresponding fuel

CESSNA MODEL 172N Aircraft Modified Per Penn Yan STC 2400 lb. yross wt. SECTION 5 PERFORMANCE

required to complete the trip with ample reserve.

LANDING

A procedure similar to takeoff should be used for estimating the landing distance at the destination airport. Figure 5-11 presents landing distance information for the short field technique. The distances corresponding to 2000 feet and 30°C are as follows:

Ground roll Total distance to clear a 50-foot obstacle 610 Feet 1390 Feet

A correction for the effect of wind may be made based on Note 2 of the landing chart using the same procedure as outlined for takeoff.

DEMONSTRATED OPERATING TEMPERATURE

Satisfactory engine cooling has been demonstrated for this airplane with an outside air temperature 23°C above standard. This is not be to considered as an operating limitation. Reference should be made to Section 2 for engine operating limitations.

AIRSPEED CALIBRATION NORMAL STATIC SOURCE

CONDITION:

ω

Power required for level flight or maximum rated RPM dive.

FLAPS UP												
KIAS KCAS	50 56	60 62	70 70	80 79	90 89	100 98	110 107	120 117	130 126	140 135	150 145	160 154
FLAPS 100			,				,					
KIAS KCAS	40 49	50 55	60 62	70 70	80 79	90 89	100 98	110 108	:::			
FLAPS 30°												
KIAS KCAS	40 47	50 53	60 61	70 70	80 80	85 84	:::					

Figure 5-1. Airspeed Calibration (Sheet 1 of 2)

SPOTION 5
COMMANCE

Aircraft Modified Per Penn Yan STC 2400 lb. gross wt.

CESSNA MODEL 172N

AIRSPEED CALIBRATION ALTERNATE STATIC SOURCE

HEATER/VENTS AND WINDOWS CLOSED

FLAPS UP											
NORMAL KIAS ALTERNAȚE KIAS	50 51	60 61	70 71	80 82	90 91	100 101	110 111	120 121	130 131	140 141	
FLAPS 10°											
NORMAL KIAS ALTERNATE KIAS	40 40	50 51	60 61	70 71	80 81	90 90	100 99	110 108			:::
FLAPS 30°											
NORMAL KIAS ALTERNATE KIAS	40 38	50 50	60 60	70 70	80 79	85 83	<u> </u>				

HEATER/VENTS OPEN AND WINDOWS CLOSED

FLAPS UP											
NORMAL KIAS TRNATE KIAS	40 36	50 48	60 59	70 70	80 80	90 89	100 99	110 108	120 118	130 128	140 139
,PS 10 ⁰							•				
NORMAL KIAS ALTERNATE KIAS	40 38	50 49	60 59	70 69	80 79	90 88	100 97	110 106			
FLAPS 30°							·				•
NORMAL KIAS ALTERNATE KIAS	40 34	50 47	60 57	70 67	80 77	85 81					

WINDOWS OPEN

FLAPS UP											
NORMAL KIAS ALTERNATE KIAS	40 26	50 .43	60 57	70 70	80 82	90 93	100 103	110 113	120 123	130 133	140 143
FLAPS 10°											
NORMAL KIAS ALTERNATE KIAS	40 25	50 43	60 57	70 69	.80 08	90 91	100 101	110 111	111		
FLAPS 30°	*										
NORMAL KIAS ALTERNATE KIAS	40 25	50 41	60 54	70 67	80 78	85 84				<u> </u>	

Figure 5-1. Airspeed Calibration (Sheet 2 of 2)

SECTION 5 PERFORMANCE Aircraft Modified Per Penn Yan STC 2400 lb. gross wt.

STALL SPEEDS

CESSNA MODEL 172N

SONDITIONS:

Power Off

NOTES:

- 1. Attitude loss during a stall recovery may be as much as 230 feet.
- 2. KIAS values are approximate.

MOST REARWARD CENTER OF GRAVITY

ſ			ANGLE OF BANK											
	WEIGHT	WEIGHT FLAP DEFLECTION		00		. 30°		50	60°					
	LBS			KCAS	KIAS	KCAS	KIAS	KCAS	KIAS	KCAS				
		UP	44	51	47	55	52	61	62	72				
	2400	10 ⁰	35	48	38	52	42	57	49	68				
		30°	33	46	35	49	39	55	47	65				

MOST FORWARD CENTER OF GRAVITY

			ANGLE OF BANK												
	WEIGHT	FLAP DEFLECTION	00		30°		45 ⁰		60°						
Pag	LBS	DELLECTION	KIAS	KCAS	KIAS	KCAS	KIAS	KCAS	KIAS	KCAS					
ന ഗ		UP	44	52	47	56	52	62	62	74					
0	2400	100	37	49	40	53	44	58	52	69					
f 11		300	33	46	35	49	39	55	47	65					

Figure 5-3. Stall Speeds

TAKEOFF DISTANCE

2400 LBS MAXIMUM WEI

SHORT FIELD

N 5 RMANCE

E

Full Throttle Prior to Brake Release Paved, Level, Dry Runway

Zero Wind NOTES:

CONDITIONS: Flaps 10°

1. Short field technique as specified in Section 4.
2. Prior to takeoff from fields above 3000 feet elevation, the mixture should be leaned to give maximum RPM in a full throttle,

Pe	ir er 400	craf Per 0 11	ın Y	od an ro		ed C wt				1	vi C				5NA 172N
,	s by 10%		40°C	TOTAL FT	10 CLEAN 50 FT OBS	1945	2155	2395	2685	3030	3455	33360	1		
	Jistance			GRND	ROLL	1065	1170	1290	1425	1575	1745	1940	1		
Prior to takeoff from fields above 3000 feet elevation, the mixture should be leaned to give maximum in a form starter starte runnin.	Decrease distances 10% for each 9 knots headwind. For operation with tailwinds up to 10 knots, increase distances by 10%		3000	GRND TOTAL FT GRND TOTAL FT GRND TOTAL FT GRND TOTAL FT GRND	TO CLEAR ROLL TO CLEAR ROLL TO CLEAR ROLL TO CLEAR SO FT OBS FT 50 FT OBS	1810	2000	2220	2480	2790	3160	3620	4220	;	
300	10 kno	gure.	"	GNRD	ROLL	- 995	1090	1200	1325	1465	1620	1800	2000	1	ລ
or named to	winds up to	ound roll" fi	20°C	TOTAL, FT	TO CLEAR 50 FT OBS	1685	1860	2060	2295	2570	2895	3300	3805	4480	theet 1 of
anonia r	with tail	the "gr		GRND	ROLL	925	1015	1115	1230	1355	1500	1665	1850	2060	S) abu
tne mixture	r operation	for each 2 knots. For operation on a dry, grass runway, increase distances by 15% of the "ground roll" figure.	10°C	TOTAL FT	TO CLEAR 50 FT OBS	1570	1725	1910	2120	2365	2660	3015	3450	4015	Eimne 5.5 Takenff Distance (Sheet 1 of 2)
vation,	ind. Fo	distance		GRND	ROLL FT	860	940	1035	1140	1260	1390	1540	1710	1905] F
3000 teet ele	knots headw	ay, increase	000	TOTAL FT	TO CLEAR 50 FT OBS	1460	1605	1770	.1960	2185	. 2445	2755	3140	3615	Figure 5.5
apone	each 9	Ss runw		GRND	ROLL FT	795	875	960	1055	1165	1285	1425	1580	1755	
n fields	0% for	dry, gra		ALT	E	15	1000	2000	3000	4000	2000	9009	7000	8000	
off fro	tances 1	nots. n on a	TAKEOFF		AT 50 FT	g	3]
Prior to take	ase dis	for each 2 knots. For operation on	TAK	' <u>'</u>	LI H	7	;								
Prior	Decre	for e. For o		EIGHT	}	2400	3								

Figure 5-5. Takeoff Distance (Sheet 1 of 2)

CESSNA MODEL 172N Aircraft Modified Per Penn Yan STC 2400 lb. gross wt.

SECTION 5 PERFORMANCE

REFER TO SHEET 1 FOR APPROPRIATE CONDITIONS AND NOTES.

TAKEOFF DISTANCE
2200 LBS AND 2000 LBS
SHORT FIELD

2000		2200	LBS	WEIGHT
46		49	유두	SPA
51		574	AT 50 FT	AKEOFF SPEED - KIAS
S.L. 1000 2000 3000 4000 5000 5000 8000	4000 5000 6000 7000 8000	S.L 2000	FT	PRESS
525 570 625 690 755 830 920 1015	855 945 1040 1150 1270 1410	650 710 780	ROLL	
970 1060 1160 1270 1400 1545 1710 1900 2125	1585 1750 1945 2170 2440 2760	1195 1310 1440	TOTAL FT TO CLEAR 50 FT OBS	0°C
565 615 675 740 815 900 990 1095	925 1020 1125 1240 1375 1525	700 765 840	ROLL	
1035 1135 1240 1365 1500 1600 1680 1845 2055	1705 1890 2105 2355 2655 3015	1280 1405 1545	TOTAL FT TO CLEAR 50 FT OBS	10°C
605 665 725 800 880 970 1070 1180	995 1100 1210 1340 1485 1650	750 825 905	GRND ROLL FT	
1110 1215 1330 1465 1465 1615 1790 1790 1990 2225 2500	1835 2040 2275 2255 2890 3305	1375 1510 1660	TOTAL FT TO CLEAR 50 FT OBS	20°C
650 710 780 860 945 1040 1150 1275 1410	1070 1180 1305 1445 1605	805 885	GRND ROLL	
1185 1295 1425 1425 1570 1736 1925 1925 2145 2405 2715	1975 2200 2465 2775 3155 3630	1470 1615 1785	TOTAL FT TO CLEAR 50 FT OBS	30°C
695 765 840 920 1015 1120 11235 1370	1150 1270 1405 1555 1730 1925	950	GRND	
1265 1386 1525 1685 1685 2070 2315 2605	2130 2375 2375 2665 3020 3450 4005	1575 1735	TOTAL FT	40°C

Figure 5-5. Takeoff Distance (Sheet 2 of 2) Page 5 of 11

Penn Yan Aero Supplemental Airplane Flight Manual & Installation Instructions for the DeltaHawk STC SA-1356GL

STOTION 5 SFORMANCE Aircraft Modified Per Penn Yan STC 2400 lb. gross wt.

CESSNA MODEL 172N

MAXIMUM RATE OF CLIMB

CONDITIONS:

Flaps Up Full Throttle

NOTE:

Mixture leaned above 3000 feet for maximum RPM.

WEIGHT	PRESS	PRESS CLIMB ALT SPEED		RATE OF C	LIMB - FPM	
LBS	FT	KIAS	-20°C	0°C	20°C	40°C
2400	S.L. 2000 4000 6000 8000 10,000 12,000	76 75 74 73 72 71	805 695 590 485 380 275 175	745 640 535 430 330 225 125	685 580 480 375 275 175	625 525 420 320 220

Figure 5-6. Maximum Rate of Climb

CESSNA MODEL 172N Aircraft Modified Per Penn Yan STC 2400 lb. gross wt.

SECTION 5 PERFORMANCE

TIME, FUEL, AND DISTANCE TO CLIMB

MAXIMUM RATE OF CLIMB

CONDITIONS:

Flaps Up Full Throttle

Standard Temperature

NOTES:

- Add 1.1 gallons of fuel for engine start, taxi and takeoff allowance. 1.
- Mixture leaned above 3000 feet for maximum RPM.
- Increase time, fuel and distance by 10% for each 10°C above standard temperature. 3.
- Distances shown are based on zero wind.

					FROM SEA LEVEL		
WEIGHT LBS	PRESSURE ALTITUDE FT	TEMP	CLIMB SPEED KIAS	RATE OF CLIMB FPM	TIME	FUEL USED GALLONS	DISTANCE NM
2400	S.L.	15	76	700	0	0.0	0
	1000	13	- 76	655	1	0.3	2
	. 2000	11	75	610	3	0.6	4
	3000	9	75	560	5	1.0	6
	4000	7	74	515	.7	1.4	9
	5000	5	74	470	9	1.7	11
	6000	3	73	425	11	2.2.	14
	7000	1	72	375	14	2.6	18
	8000	-1	72	330	1,7	3.1	22
	9000	-3	71	285	20	3.6	26
	10,000	-5	. 71	240	24	4.2	32
	11,000	-7	70	190	29	4.9	38
	12,000	-9	70	145	35	5.8	47

Figure 5-7. Time, Fuel, and Distance to Climb

¥

←SECTION 5 ⊷PERFORMANCE Aircraft Modified Per Penn Yan STC 2400 lb. gross wt. CESSNA MODEL 172N

CRUISE PERFORMANCE

CONDITIONS:

2400 Pounds

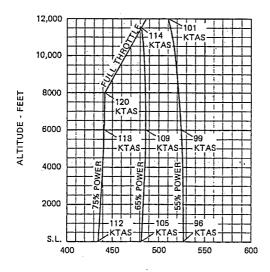
Recommended Lean Mixture (See Section 4, Cruise)

PRESSURE			20°C BELOW STANDARD ANDARD TEMPERATURE S						C ABOV	
ALTITUDE	RPM	% BHP	KTAS	GPH	% BHP	KTAS	GPH	% BHP	KTAS	GPH
2000	2500 2400 2300 2200 2100	72 65 58 52	110 104 99 92	8.1 7.3 6.6 6.0	76 69 62 55 50	114 109 103 97 91	8.5 7.7 6.9 6.3 5.8	72 65 59 53 48	114 108 102 96 89	8.1 7.3 6.6 6.1 5.7
4000	2550 2500 2400 2300 2200 2100	77 69 62 56 51	115 109 104 98 91	8.6 7.8 7.0 6.3 5.8	76 73 65 59 54 48	117 114 108 102 96 89	8.5 8.1 7.3 6.6 6.1 5.7	72 69 62 57 51 47	116 113 107 101 94 88	8.1 7.7 7.0 6.4 5.9 5.5
6000	2600 2500 2400 2300 2200 2100	73 66 60 54 49	114 108 103 96 90	8.2 7.4 6.7 6.1 5.7	77 69 63 57 52 47	119 113 107 101 95 88	8.6 7.8 7.0 6.4 5.9 5.5	72 66 60 55 50 46	118 112 106 99 92 86	8.1 7.4 6.7 6.2 5.8 5.5
8000	2650 2600 2500 2400 2300 2200	70 63 57	119 113 108 101 95	8.7 7.8 7.1 6.4 6.0	77 73 66 60 55 50	121 118 112 106 100 93	8.6 8.2 7.4 6.7 6.2 5.8	73 69 63 58 53 49	120 117 111 104 97 91	8.1 7.8 7.1 6.5 6.0 5.7
10,000	2600 2500 2400 2300 2200	67 61 55	118 112 106 100 93	8.3 7.5 6.8 6.3 5.8	70 64 58 53 49	117 111 105 98 91	7.8 7.1 6.5 6.0 5.7	66 61 56 51 47	115 109 102 96 89	7.4 6.8 6.3 5.9 5.6
12,000	2550 2500 2400 2300	64	114 111 105 98	7.5 7.2 6.6 6.1	64 61 56 51	112 109 103 96	7.1 6.8 6.3 5.9	61 59 54 50	111 107 100 94	6.9 6.6 6.1 5.8
1										<u> </u>

де 8

Figure 5-8. Cruise Performance

JESSNA MODEL 172N Aircraft Modified Per Penn Yan STC 2400 lb. gross wt.


SECTION 5 PERFORMANCE

RANGE PROFILE 45 MINUTES RESERVE 40 GALLONS USABLE FUEL

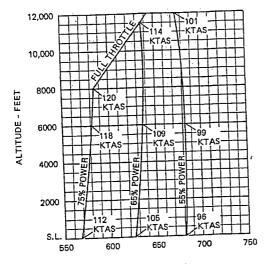
CONDITIONS: 2400 Pounds Recommended Lean Mixture for Cruise Standard Temperature Zero Wind

NOTE:

This chart allows for the fuel used for engine start, taxi, takeoff and climb, and the distance during climb.

RANGE - NAUTICAL MILES

Figure 5-9. Range Profile (Sheet 1 of 3)


N 5 URMANCE Aircraft Modified Per Penn Yan STC 2400 lb. gross wt.

CESSNA MODEL 172N

RANGE PROFILE 45 MINUTES RESERVE 50 GALLONS USABLE FUEL

CONDITIONS: 2400 Pounds Recommended Lean Mixture for Cruise Standard Temperature Zero Wind

This chart allows for the fuel used for engine start, taxi, takeoff and climb, and the distance during climb.

RANGE - NAUTICAL MILES

Figure 5-9. Range Profile (Sheet 2 of 3)

MAR

SECTION 5 PERFORMANCE Aircraft Modified Per Penn Yan STC 2400 lb. gross wt.

CESSNA MODEL 172N

ENDURANCE PROFILE 45 MINUTES RESERVE 40 GALLONS USABLE FUEL

CONDITIONS: 2400 Pounds

Page

9

Recommended Lean Mixture for Cruise

Standard Temperature

This chart allows for the fuel used for engine start, taxi, takeoff and climb, and the time during climb.

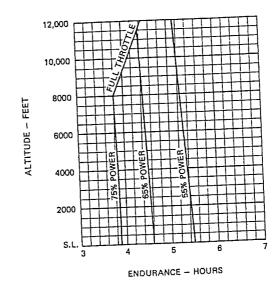


Figure 5-10. Endurance Profile (Sheet 1 of 3)

ESSNA MODEL 172N Aircraft Modified Per Penn Yan STC 2400 lb. gross wt.

SECTION 5 PERFORMANCE

ENDURANCE PROFILE 45 MINUTES RESERVE 50 GALLONS USABLE FUEL

CONDITIONS:

2400 Pounds

Recommended Lean Mixture for Cruise

Standard Temperature

NOTE:

This chart allows for the fuel used for engine start, taxi, takeoff and climb, and the time during climb.

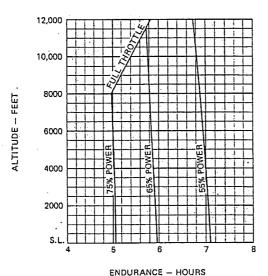


Figure 5-10. Endurance Profile (Sheet 2 of 3)

CESSNA DEL 172N Aircraft Modified Yan STC Per 2400 Penn gross wt. lb.

MEIGHT

SPEED AT 50 FT KIAS

2400

9

SECTION 5 PERFORMANCE

> Flaps 30° CONDITIONS:

Pawer Off

Paved, Level, Dry Runway Maximum Braking

NOTES: Zero Wind 1. Short field technique as specified in Section 4.

SHORT FIELD

LANDING DISTANCE

•	•		•	•
If a landing with flaps up is necessary, increase one oppression	For operation on a dry, grass tunway, increase the anorpach speed by 7 KIAS and allow for 35% longer distances.	for each 2 knots.	Decrease distances 10% for each 9 knots neadward. The operation and the control of the control o	Short field technique as specified in Section 3. East appreciate with failwinds up to 10 knots, increase distances by 10%

Fig. 5-11. Landing Distance

LOADED AIRPLANE WEIGHT (POUNDS)

8 8 8 8 8 8 CLOADED AIRPLANE WEIGHT (KILOGRAMS)

1700 1600

> CATEGORY חזורוגג

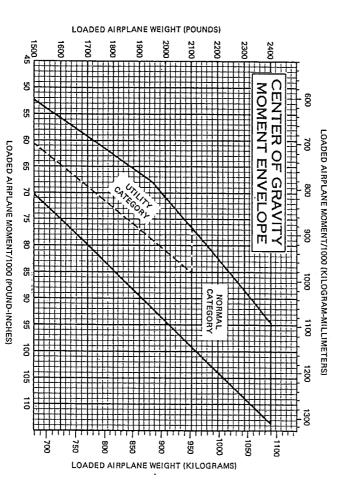
딿 မ္တ

37

ଞ୍ଚ

မွ 8

2


Penn Yan Aero Supplemental Airplane Flight Manual & Installation Instructions for the DeltaHawk STC SA-1356GL

750

AIRPLANE C.G. LOCATION - INCHES AFT OF DATUM (STA. 0.0)

Figure 6-8. Center of Gravity Limits

28

Page 10 of 11

Penn Yan Aero Supplemental Airplane Flight Manual & Installation Instructions for the DeltaHawk STC SA-1356GL

GARMIN Ltd. or its subsidiaries c/o GARMIN International, Inc. 1200 E. 151st Street Olathe, Kansas 66062 U.S.A.

FAA Approved AIRPLANE FLIGHT MANUAL SUPPLEMENT or SUPPLEMENTAL AIRPLANE FLIGHT MANUAL

for the

GARMIN G5 ELECTRONIC FLIGHT INSTRUMENT

GARMIN G5 ELECTRONIC FLIGHT INSTRUMENT as installed in

Cessna 172N

Make and Model Airplane

make and Model Airplane

Registration Number: <u>1738BS</u> Serial Number: <u>17269854</u>

This document serves as an Airplane Flight Manual Supplement or as a Supplemental Airplane Flight Manual when the aircraft is equipped in accordance with Supplemental Type Certificate SA01818WI for the installation and operation of the Garmin G5 Electronic Flight Instrument. This document must be carried in the airplane at all times.

The information contained herein supplements or supersedes the information made available to the operator by the aircraft manufacturer in the form of clearly stated placards or markings, or in the form of an FAA approved Airplane Flight Manual, only in those areas listed herein. For limitations, procedures and performance information not contained in this document, consult the basic placards or markings, or the basic FAA approved Airplane Flight Manual.

FAA approved sections of this supplement are labeled as "FAA APPROVED." Sections not labeled "FAA APPROVED" are provided for guidance information only.

FAA APPROVED BY: Land Mant

Paul Mast

ODA STC Unit Administrator

GARMIN International, Inc.

ODA-240087-CE

DATE: 5-2-2023

© Copyright 2019 - 2023 Garmin Ltd. or its subsidiaries All Rights Reserved

Except as expressly provided herein, no part of this manual may be reproduced, copied, transmitted, disseminated, downloaded or stored in any storage medium, for any purpose without the express prior written consent of Garmin. Garmin hereby grants permission to download a single copy of this manual and of any revision to this manual onto a hard drive or other electronic storage medium to be viewed and to print one copy of this manual or of any revision hereto, provided that such electronic or printed copy of this manual or revision must contain the complete text of this copyright notice and provided further that any unauthorized commercial distribution of this manual or any revision hereto is strictly prohibited.

Garmin International, Inc. 1200 E. 151st Street Olathe, KS 66062 USA Telephone: 913-397-8200 www.garmin.com

Garmin International, Inc Log of Revisions

FAA Approved AIRPLANE FLIGHT MANUAL SUPPLEMENT

or

SUPPLEMENTAL AIRPLANE FLIGHT MANUAL GARMIN G5 ELECTRONIC FLIGHT INSTRUMENT

REV NO.	PAGE NO(S)	DESCRIPTION	DATE OF APPROVAL	FAA APPROVED
1	ALL	Original Issue	7/22/2016	Robert Murray ODA STC Unit Administrator
2	ALL	Added information regarding G5 DG/HSI.	4/28/2017	Robert Murray ODA STC Unit Administrator
3	. ALL	Added interface to 3 rd party autopilots.	10/18/2017	Robert Murray ODA STC Unit Administrator
4	ALL	Added note to General section.	10/26/2017	Paul Mast ODA STC Unit Administrator
5	ALL	Reformatted document. Updated system messages interface. Added DG/HSI reversion description.	12/20/2017	Robert Murray ODA STC Unit Administrator
6	ALL	Added interface description to GAD 13. Added information regarding multiple NAV source inputs.	7/19/2019	David G. Armstrong ODA STC Unit Administrator
7	ALL	Added information regarding FAA approved content. Updated SW ver. and references to GAD 29B to GAD 29B/GAD29D	9/28/2021	Paul Mast ODA STC Unit Administrator
	3-4	Addition of NO BATT emergency procedure.		
8	4-2	Update normal procedure: Prior to Flight in IMC.	12/29/2021	Robert Murray ODA STC Unit Administrator
	4-3	Update Roll Steering (GPSS) emulation normal procedure.		
9	2-1	Update limitations regarding use of secondary instruments.	See Cover	See Cover

This page intentionally left blank.

Table of Contents

Section 1 – General1-1				
Abbreviations and Terminology1-2				
Section 2 – Limitations2-1				
System Software Requirements2-1				
Use of Secondary Instruments2-1				
Kinds of Operations2-1				
Section 3 – Emergency Procedures3-1				
G5 Failure Indications3-1				
Attitude Failure3-1				
Heading Failure, Loss of Magnetometer Data, or Magnetic Field Error3-1				
GPS Failure3-2				
Attitude Aligning3-2				
Attitude Aligning / Keep Wings Level3-2				
Loss of Electrical Power to the G5 Display3-2				
Loss of Electrical Power to the GAD 29B/GAD 29D (If Installed)3-3				
Loss of Electrical Power to the GAD 13 (If Installed)3-3				
Internal Battery Failure3-4				
Section 4 - Normal Procedures4-1				
G5 Power Button and Knob4-1				
Backlight Intensity Adjustment4-1				
Prior to Flight in Instrument Meteorological Conditions4-2				
Autopilot Operations with the G54-3				
Course / NAV Selection Coupling to the Autopilot (If Configured)4-3				
Heading Bug Coupling Capability to the Autopilot (If Configured)4-3				
Roll Steering (GPSS) Emulated via HDG Mode (If Configured)4-3				
HSI Source Selection (If Configured)4-4				
HSI Portable Navigation Device GPS VFR Annunciation (If Configured)4-4				
Section 5 – Performance				
Section 6 - Weight and Balance6-1				
Section 7 – System Description7-1				
System Messages7-1				

This page intentionally left blank.

SECTION 1 – GENERAL

The G5 Electronic Flight Instrument can display the following information to the pilot depending on the installation and location of the G5 instrument.

- · Primary attitude
- · Primary slip and turn rate information
- · Primary heading
- Secondary airspeed
- · Secondary altimeter
- · Secondary ground track

When installed in place of the attitude indicator, the primary function of the G5 is to provide attitude information to the pilot. When installed in place of the rate of turn indicator, the primary function of the G5 is to provide turn rate and slip ball information to the pilot. When installed in place of the directional gyro, the primary function of the G5 is to provide directional information to the pilot.

NOTE

The pilot is reminded to perform appropriate flight and navigation instrument cross checks for the type of operation being conducted.

In case of a loss of aircraft electrical power, a backup battery (optional when installed as a DG/HSI) sustains the G5 Electronic Flight Instrument for up to four hours.

An optional GAD 29B/GAD 29D may be installed to provide course and heading datum to an autopilot based on the data selected for display on the HSI.

An optional GAD 13 and OAT probe may be installed to provide measured outside air temperature (OAT) to the G5 for display of true airspeed (TAS), outside air temperature, winds, and density altitude.

This STC allows the removal of the aircraft's vacuum system if it is not required to support any other airframe system.

Abbreviations and Terminology

The following glossary is applicable within the airplane flight manual supplement

ADI Attitude Direction Indicator

AFMS Airplane Flight Manual Supplement

ATT Attitude

CDI Course Deviation Indicator

DG Directional Gyro

DR Dead Reckoning

FAA Federal Aviation Administration

GPS Global Positioning System

GPSS GPS Roll Steering

HDG Heading

HSI Horizontal Situation Indicator

ILS Instrument Landing System

LOC Localizer (no glideslope available)

LOI Loss of Integrity

OAT Outside Air Temperature

TAS True Airspeed

VFR Visual Flight Rules
VHF Very High Frequency

VOR VHF Omni-directional Range

SECTION 2 – LIMITATIONS

System Software Requirements

The G5 must utilize the following or later FAA approved software versions for this AFMS revision to be applicable:

Component	Software Version
G5 Electronic Flight Instrument	8.00

Use of Secondary Instruments

A G5 Electronic Flight Instrument may not be used as a primary indication of airspeed, altitude, or vertical speed.

If a G5 Electronic Flight Instrument is installed as the primary rate of turn indicator, a second G5 may not be used as a primary indication of aircraft attitude.

A G5 Electronic Flight Instrument installed in place of a directional gyro may not also be used as a primary indication of aircraft attitude. A second G5, in addition to a G5 used as a directional gyro, may be installed as primary indication of aircraft attitude.

NOTE:

For aircraft approved for VFR-only operations, the G5 Electronic Flight Instrument may be installed as an attitude indicator and rate of turn indicator.

Kinds of Operations

No Change except for the following:

When a portable navigation source is selected on the G5, it shall not be used for the primary means
of navigation for IFR operations.

This page intentionally left blank.

SECTION 3 - EMERGENCY PROCEDURES

G5 Failure Indications

If a G5 function fails, a large red 'X' is typically displayed over the instrument(s) or data experiencing the failure. Upon G5 power-up, certain instruments remain invalid as equipment begins to initialize. All instruments should be operational within one minute of power-up. If any instrument remains flagged and it is not likely an installation related problem, the G5 should be serviced by a Garmin-authorized repair facility.

Attitude Failure

Attitude failure is indicated by removal of the sky/ground presentation, a red X, and a yellow "ATTITUDE FAIL" on the display.

Rate-of-tum and slip information will not be available.

- 1. Use standby instruments.
- 2. Seek VFR conditions or land as soon as practical.

Heading Failure, Loss of Magnetometer Data, or Magnetic Field Error

A heading failure, loss of magnetometer data, or magnetic field error is indicated by removal of the digital heading readout, a red X, and a yellow "HDG" on the display.

1. Use standby magnetic compass.

NOTE:

If the G5 DG/HSI has a valid GPS signal the G5 DG/HSI instrument will display the GPS track information in magenta.

GPS Failure

If GPS navigation receivers and/or navigation information are not available or invalid, the G5 will display Dead Reckoning mode (DR) or Loss of Integrity mode (LOI) on the HSI in the lower left corner.

If Alternate Navigation Sources (ILS, LOC, VOR) Are Available:

1. Use alternate navigation source.

If No Alternate Navigation Sources Are Available:

If DR is Displayed on HSI:

- 1. Use the amber CDI for course information.
- 2. Fly toward known visual conditions.

If LOI is Displayed on HSI:

1. Fly toward known visual conditions.

For aircraft equipped with a GAD 29B/GAD 29D interfaced to an autopilot, GPSS will be displayed in amber text when GPSS emulation has been selected from the G5 menu.

1. Deselect GPSS from the G5 menu and select a different autopilot mode.

Attitude Aligning

During system initialization, the G5 displays the message 'ALIGNING' over the attitude indicator. The G5 will typically display valid attitude within the first minute of power-up. The G5 can also align itself while taxiing and during level flight.

If the "ALIGNING" indication occurs during flight and attitude remains displayed, the attitude display is acceptable for use for flight in instrument conditions. The message will clear when the attitude solution is within the systems internal accuracy tolerances. It is recommended to maintain wings level to reduce the time for the system to align.

Attitude Aligning / Keep Wings Level

If the "ALIGNING KEEP WINGS LEVEL" indication occurs during flight, the G5 has detected an invalid attitude solution and will not display any attitude information.

- Use standby instruments to maintain wings level flight. The system will display attitude when internal accuracy tolerances have been met.
- 2. If attitude does not return, seek VFR conditions or land as soon as practical.

Loss of Electrical Power to the G5 Display

In the event of a loss of aircraft electrical power to the G5 attitude display, the indicator will continue to function on its internal battery. If an internal battery is installed on the optional G5 HSI, the indicator will continue to function on the internal battery if aircraft power is lost. Internal battery endurance is indicated on the G5 display in hours and minutes. The charging symbol will be removed and the internal battery will not be charged.

In the event the G5 attitude display powers down, the optional G5 HSI will automatically revert to displaying attitude information. It will not revert back to the DG/HSI format if the G5 attitude unit regains power. The DG/HSI presentation may be selected from the G5 menu on the G5 DG/HSI unit after reversion to the attitude display.

Loss of Electrical Power to the GAD 29B/GAD 29D (If Installed)

In the event of a loss of aircraft electrical power to the optional GAD 29B/GAD 29D, the heading and course datum will be unavailable to the autopilot and the autopilot may deviate from the intended path or may disconnect. GPS flight plan course information may be displayed on the HSI and VFR will be displayed in amber text on the HSI. GPSS will be displayed in amber text, if GPSS mode is selected.

- 1. Deselect GPSS from the G5 menu and select a different autopilot mode.
- 2. Lateral GPS course guidance may only be used in VFR conditions.

Loss of Electrical Power to the GAD 13 (If Installed)

In the event of a loss of aircraft electrical power to the optional GAD 13, the OAT and TAS indications will be replaced with a red X. The Density Altitude indication will be removed, and "No Wind Data" will be displayed in the wind field.

1. Use an alternate source of outside air temperature to calculate true airspeed, density altitude, and winds.

Internal Battery Failure

In the event of a failure of the G5 internal battery, "NO BATT" will be displayed with a red X. This indicates that the G5 internal battery is not functional.

1. If "NO BATT" is displayed on the G5 attitude indicator, do not fly in instrument meteorological conditions.

WARNING

If NO BATT is displayed on the G5 attitude indicator, the unit will not function in the event of a loss of aircraft electrical power to the G5 attitude indicator. Do not fly in instrument meteorological conditions if NO BATT is displayed on the G5 attitude indicator.

SECTION 4 - NORMAL PROCEDURES

G5 Power Button and Knob

The G5 display will power on with the application of aircraft power. The G5 power button is used to turn the display on and off. Press and hold the power button to turn the display off.

The knob performs the following functions:

	Press to access the Menu.
Press	From the Menu, press to select the desired menu item.
riess	Press to accept the displayed value when editing numeric data or selecting from a list.
	Press to sync the heading or track bug for the HSI.
	From the Menu, turn the Knob to move the cursor to the desired menu item.
Turn	For the ADI, rotate to adjust the baro setting on the secondary altitude display.
Tuiti	For the HSI, rotate to adjust the heading or track bug.
	Turn to select the desired value when editing numeric data or selecting from a list.

Backlight Intensity Adjustment

The power up state of the G5 backlight is in Auto adjustment mode.

To adjust the backlighting:

To select Manual mode from Auto mode:

- 1. While the unit is turned on, press the Power button.
- 2. Turn the knob to manually adjust the backlight intensity.
- 3. Press the knob to close the backlight page.

To select Auto mode from Manual mode:

- 1. While the unit is turned on, press the Power button.
- 2. Press the Power button again to select Auto.
- 3. Press the knob to close the backlight page.

Prior to Flight in Instrument Meteorological Conditions

- 1. Press the Power button on the G5 attitude indicator.
- Verify the battery status indicator is green on the G5 attitude indicator.
 (The battery status indicator will change from green to amber or red when battery status has decreased below 41%).

Valid Battery Indication

No Battery Detected

WARNING

If NO BATT is displayed on the G5 attitude indicator, or green battery status is not shown after pressing the power button on the G5 attitude indicator, do not fly in instrument meteorological conditions.

Autopilot Operations with the G5

The G5 and optional GAD 29B/GAD 29D offer various integration capabilities dependent upon the type of autopilot installed in a particular aircraft.

The G5 Electronic Flight Instrument installation in this aircraft provides the following autopilot functions (appropriate boxes will be checked):

- ☐ This installation does not interface with the autopilot (basic wing leveling autopilot or no autopilot is installed in the aircraft).
- ☐ A GAD 29B/GAD 29D Adapter is installed in this aircraft.
 - ☐ Course Selection coupling to the autopilot.
 - □ NAV Selection coupling to the autopilot.
 - ☐ Heading Bug coupling capability to the autopilot.
 - ☐ Roll Steering (GPSS) emulated via heading mode.

OR

☐ Roll Steering capable autopilot (GPSS menu function for emulation not applicable).

Course / NAV Selection Coupling to the Autopilot (If Configured)

When operating the autopilot in NAV mode, the deviation information from the installed navigation sources (i.e. GPS or NAV) is switched via the navigation source. The NAV source displayed on the HSI is the NAV source the autopilot is following. Many autopilots also use the course datum to determine the best intercept angles when operating in NAV mode.

Heading Bug Coupling Capability to the Autopilot (If Configured)

When operating the autopilot in HDG mode, the difference between the HDG bug location on the HSI and the actual aircraft heading creates an error signal which the autopilot will minimize by turning in the direction of the bug. If the bug is turned more than 180 degrees, the autopilot may turn the airplane in the opposite direction of the desired turn.

Roll Steering (GPSS) Emulated via HDG Mode (If Configured)

For autopilots that do not support digital GPSS signals, GPSS functionality may be emulated by operating the autopilot in HDG mode and selecting GPSS from the G5 menu. If the autopilot is already designed to receive roll steering information, the data is transmitted digitally from the navigator to the autopilot.

When GPSS is selected on the G5 menu, the heading bug on the ADI and HSI changes to a hollow outline and a crossed-out heading bug appears on the G5 ADI and HSI display indicating that the autopilot is not coupled to the heading bug. The bug is still controllable and may still be used for reference.

When GPSS is selected on the G5, GPSS turn commands are converted into a heading error signal to the autopilot. When the autopilot is operated in HDG mode, the autopilot will fly the turn commands from the GPS navigator. If the GPSS data is invalid (for example, if there is no active GPS leg) or the selected navigation source on the G5 ADI and HSI is not GPS, the annunciated GPSS text will be yellow and a zero turn command will be sent to the autopilot.

HSI Source Selection (If Configured)

For aircraft configured with two navigation inputs to the G5, the desired source may be selected using the G5 knob and menu selection. Press the G5 knob to cycle between the NAV1 and NAV2 input.

HSI Portable Navigation Device GPS VFR Annunciation (If Configured)

For aircraft configured for a portable navigation device input to the G5, a GPS VFR indicated in magenta will be displayed on the HSI. When the G5 with a portable navigation device is interfaced there is not enough quidance data for IFR use.

SECTION 5 - PERFORMANCE

No change.

This page intentionally left blank.

SECTION 6 - WEIGHT AND BALANCE

See current weight and balance data.

This page intentionally left blank.

SECTION 7 - SYSTEM DESCRIPTION

Refer to Garmin G5 Electronic Flight Instrument Pilot's Guide for Certified Aircraft, part number 190-01112-12 Rev A (or later approved revisions), for a description of the G5 electronic flight instrument. This reference material is not required to be on board the aircraft but does contain a more in-depth description of all the functions and capabilities of the G5.

The ATT circuit breaker supplies power to the G5 instrument for normal power operation and to charge the internal battery.

The DG circuit breaker supplies power to the G5 instrument for normal power operation when configured as a DG, and to charge the internal battery (if installed).

The HSI circuit breaker supplies power to the G5 instrument for normal power operation when configured as an HSI, and to charge the internal battery (if installed).

The GAD circuit breaker supplies power to the optional GAD 29B/GAD 29D adapter and optional GAD 13 adapter for normal power operation.

System Messages

The G5 has the capability to display system messages to the crew along the bottom of the display. A system message is indicated through a white \blacksquare indication on the G5.

Messages can be displayed by pressing the G5 knob and selecting the Message menu item.

(For Reference Only)

The following table shows the meaning of each message. System messages are displayed in white text.

Message	Meaning
External Power Lost	Aircraft power has been removed from the G5.
Critical battery fault! Powering off	Battery has critical fault condition and the unit is about to power off to avoid damage to the battery.
Battery fault	Battery has a fault condition – unit needs service.
Battery charger fault	Battery charger has a fault condition – unit needs service.
Low battery	Battery charge level is low.
Hardware fault	Unit has a hardware fault – unit needs service.
Power supply fault	Unit power supply fault detected – unit needs service.
Unit temperature limit exceeded	Unit is too hot or too cold.
Network address conflict	Another G5 with the same address is detected on the network (most commonly a wiring error on one of the units).
Communication error	General communication error (most commonly appears in conjunction with Network Address Conflict message).
Factory calibration data invalid	Unit calibration data not valid – unit needs service.
Magnetic field model database out of date	Internal magnetic field database is out of date - software update required.
Magnetometer Hardware fault	The magnetometer has detected a fault – unit needs service. Heading data may not be available.
Using external GPS data	GPS data from another network LRU is being used. The unit's internal GPS receiver is enabled, but unable to establish a GPS fix.
Not receiving RS-232	The G5 is not receiving RS-232 data from the GPS navigator – system needs service
Not receiving ARINC 429 data	The G5 is not receiving ARINC 429 data from the navigation source – system needs service.
GPS receiver fault	The G5 on-board GPS receiver has a fault.
ARINC 429 interface configuration error	The G5 ARINC 429 port is receiving information from an incorrect source – system needs service.
Software version mismatch	The G5 attitude indicator and the G5 HSI units have different software. Cross fill of baro, heading and altitude bugs is disabled.

These messages remain while the condition persists.

Garmin International, Inc. 1200 E. 151st Street Olathe, Kansas 66062 U.S.A.

FAA APPROVED

AIRPLANE FLIGHT MANUAL SUPPLEMENT

oi.

SUPPLEMENTAL AIRPLANE FLIGHT MANUAL

for the

Garmin GTX 33X and GTX 3X5 Transponders with ADS-B as installed in

Make and Model Airplane

Registration Number: N738BS Scrial Number: 172 69854

This document serves as an FAA Approved Airplane Flight Manual Supplement or Supplemental Airplane Flight Manual when the GTX 33X or GTX 3X5 with ADS-B is installed in accordance with Supplemental Type Certificate SA01714WI. This document must be incorporated into the FAA Approved Airplane Flight Manual or provided as an FAA Approved Supplemental Airplane Flight Manual.

The information contained herein supplements the FAA approved Airplane Flight Manual. For limitations, procedures, loading and performance information not contained in this document, refer to the FAA approved Airplane Flight Manual, markings, or placards.

FAA Approved By:

JR Brownell

JR Brownell ODA STC Unit Administrator Garmin International, Inc. ODA-240087-CE

Date:

6/16/2021

	LOG OF REVISIONS			
	Pag			
Revision Number	Date	Number	Description	FAA Approved
1	05/01/2013	All	Complete Supplement	Robert Muvray Robert Murray ODA STC Unit Administrator Garmin International, Inc. ODA-240087-CE Date: 05/01/2013
2	03/08/2016	AlI	New supplement format with GTX 3X5 added.	Michael Wavren Michael Warren ODA STC Unit Administrator Garmin International, Inc. ODA-240087-CE Date: 03/08/2016
3	12/07/2017	All	Updated SW versions and removed section 3.2.3. Updated section 2.2 Corrected PED FAR reference and additional minor corrections.	Erik Frisk Erik Frisk ODA STC Unit Administrator Garmin International, Inc. ODA-240087-CE Date: 12/21/2017
4	09/09/2019	4, 6, 7, 9, 11, 13, 14, 18	Added GTX diversity units, updated SW versions, expanded allowed remote control panels, and incorporated other minor changes	JR Brownell JR Brownell ODA STC Unit Administrator Garmin International, Inc. ODA-240087-CE Date: U9/09/2019
5	06/16/2021	10, 11, 14, 18	Updated GTX 3X5 Main software to version 2.60, added GI 275 as a control display and GPS 175/GNC 355 as a GPS source	See cover page 1

Table of Contents

SECTION	NC	PAGE
Section	1. GENERAL	4
	GTX 33X	4
1.2	GTX 3X5	6
1.3	Capabilities	9
1.4	GTX 3X5 Capabilities Installation Configuration Definitions	9
1.5	Definitions	12
Section	2. LIMITATIONS	13
2.1	Minimum Equipment	13
2.2	ADS-B Out	13
2.3	TIS Traffic Display with User Navigation Angle	13
2.4	Applicable System Software	14
2.5	Pressure Altitude Broadcast Inhibit (PABI)	14
2.6	Datalinked Weather Display (GTX 345 Only)	14
2.7	Portable Electronic Devices	14
Section	3. EMERGENCY PROCEDURES	15
3.1	Emergency Procedures	15
3.2	Abnormal Procedures	15
Section	4. NORMAL PROCEDURES	16
4.1	Unit Power On	16
	Before Takeoff	17
ction	5. PERFORMANCE	17
_ection	6. WEIGHT AND BALANCE	17
Section	7. SYSTEM DESCRIPTION	18
7.1	GTX TIS Behavior	18
7.2	GTX 345R and G950/1000 No Bearing Traffic Alerts	18

Section 1. GENERAL

1.1 GTX 33X

The Garmin GTX 33X family consists of the GTX 330 ES and GTX 33 ES (Non-Diversity Mode S Transponders) and the GTX 330D ES and GTX 33D ES (Diversity Mode S Transponders). The ES option of any of the transponders provides ADS-B extended squitter functionality.

All Garmin GTX 33X transponders are a radio transmitter/receiver that operates cradar frequencies, receiving ground radar or TCAS interrogations at 1030 MHz and transmitting a coded response of pulses to ground-based radar on a frequency of 1090 MHz. Each unit is equipped with IDENT capability to initiate the SPI (special position identification) pulse for 18 seconds and will reply to ATCRBS Mode A, Mode C and Mode S All-Call interrogation. Interfaces to the GTX 33X are shown in the following block diagrams.

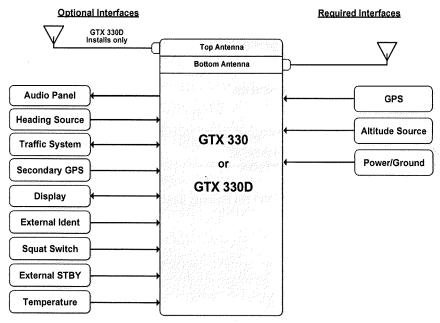


Figure 1 – GTX 330 or GTX 330D Interface Summary

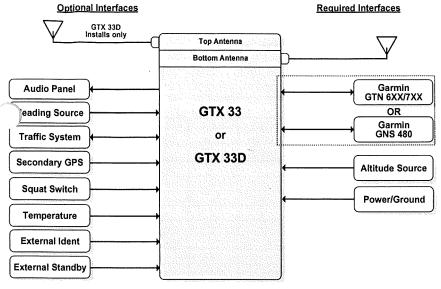


Figure 2 – GTX 33 or GTX 33D Interface Summary

The GTX 33X performs the following functions:

- Transmission of ADS-B out data on 1090 extended squitter (1090 MHz)
 - o Integration of data from internal and external sources to transmit the following data per 14 CFR 91.227:
 - GPS Position, Altitude, and Position Integrity
 - Ground Track and/or Heading, Ground Speed, and Velocity Integrity
 - Air Ground Status
 - Flight ID, Call Sign, ICAO Registration Number
 - Capability and Status Information
 - Transponder Squawk Codes between 0000-7777.
 - Emergency Status
 - IDENT initiates SPI (special position identification) pulse for 18 seconds
 - o Pressure Altitude Broadcast Inhibit
 - Reception of TIS-A traffic data from a ground station
- Provides TIS-A traffic alerting to the pilot via interfaced display and audio output

1.2 GTX 3X5

The Garmin GTX 3X5 family consists of the GTX 335, 335D, 335D, 335D, 345, 345D, 345R, and 345DR transponders. The functional differences between each of these transponders are described in Table 1. Transponder models with a "D" designation are diversity capable and support both a top fuselage and bottom fuselage antenna.

Function	GTX 335/ 335D	GTX 335 w/GPS	GTX 335R/ 335DR	GTX 335R w/GPS	GTX 345/ 345D	GTX 345 w/GPS	GTX 345R/ 345DR	GT2. 345R w/GPS
Panel mount	х	х			х	x		
Remote mount			х	х			х	х
Mode S	х	Х	х	х	X	х	х	х
ADS-B (out)	х	х	х	х	х	х	х	Х
ADS-B Traffic					х	х	х	х
FIS-B					х	х	х	Х
Internal GPS		X		х		х		х
Bluetooth					х	х	х	х
Optional Garmin Altitude Encoder	х	x	x	x	x	x	x	x

Table 1 – GTX 3X5 Unit Configurations

Interfaces to the GTX 3X5 are shown in Figure 3.

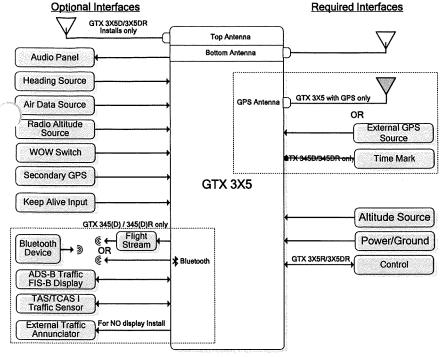


Figure 3 – GTX 3X5 Interface Summary

The GTX 3X5 performs the following functions:

- Transmission of ADS-B out data on 1090 extended squitter (1090 MHz)
 - o Integration of data from internal and external sources to transmit the following data per 14 CFR 91.227:
 - GPS Position, Altitude, and Position Integrity
 - Ground Track and/or Heading, Ground Speed, and Velocity Integrity
 - Air Ground Status
 - Flight ID, Call Sign, ICAO Registration Number
 - Capability and Status Information
 - Transponder Squawk Codes between 0000-7777.
 - Emergency Status
 - IDENT initiates SPI (special position identification) pulse for 18 seconds
 - Pressure Altitude Broadcast Inhibit

The GTX 335 performs the following additional functions:

- Reception of TIS-A traffic data from a ground station
- Provide TIS-A traffic alerting to the pilot via interfaced display and audio output.

The GTX 345 performs the following additional functions:

- Reception of ADS-B In data on 1090 MHz
 - o ADS-B (Data directly from another transmitting aircraft)
 - o ADS-R (Rebroadcast of ADS-B data from a ground station)
- Reception of ADS-B In data on UAT (978 MHz)
 - o ADS-B (Data directly from another transmitting aircraft)
 - o ADS-R (Rebroadcast of ADS-B data from a ground station)
 - o TIS-B (Broadcast of secondary surveillance radar) (SSR) derived traffic information from a ground station.
 - o FIS-B (Broadcast of aviation data from a ground station)
- Provide ADS-B traffic information and alerting to the pilot via an interfaced display
 - o Correlation and consolidation of traffic data from multiple traffic sources
 - Aural and visual traffic alerting
- Provide FIS-B data to the pilot via an interfaced display
 - Graphical and textual weather products
 - NEXRAD
 - PIREPs
 - AIRMET/SIGMETs
 - METARs
 - TAFs
 - Winds Aloft
 - Aviation Data
 - TFRs
 - NOTAMs

1.3 Capabilities

The Garmin GTX 33X and GTX 3X5 as installed in this aircraft have been shown to meet the equipment requirements of 14 CFR § 91.227 when operating in accordance with sections 2.1 and 2.2 of this supplement.

1.4 Installation Configuration

is aircraft is equipped with a GTX 33X and/or GTX 3X5 with the following interfaces/ features:

Equipment Installed:

☐ GTX 345DR

Transponder #1	Transponder #2 (if installed)
□ GTX 330	□ GTX 330
☐ GTX 330D	☐ GTX 330D
□ GTX 33	□ GTX 33
□ GTX 33D	□ GTX 33D
□ GTX 335	□ GTX 335
☐ GTX 335D	☐ GTX 335D
☐ GTX 335R	☐ GTX 335R
☐ GTX 335DR	☐ GTX 335DR
GTX 345	□ GTX 345
☐ GTX 345D	☐ GTX 345D
☐ GTX 345R	☐ GTX 345R

☐ GTX 345DR

Interfaced GPS/SBAS Position Source	(\$):
<u>GPS #1</u>	GPS #2 (if installed)
☐ Internal	☐ Internal
☐ GTN 6XX/7XX Series	☐ GTN 6XX/7XX Series
☐ GNS 400W/500W Series	☐ GNS 400W/500W Series
☐ GNS 480	☐ GNS 480
☐ GIA 63W	□ GIA 63W
☐ GDL 88 (GTX 330 only)	☐ GDL 88 (GTX 330 only)
☐ GPS 175/GNC 355	☐ GPS 175/GNC 355
Interfaced Pressure Altitude Source:	
Pressure Altitude Source #1	Pressure Altitude Source #2 (if installed)
☐ Garmin Altitude Encoder	☐ Garmin Altitude Encoder

Interfaced Remote Control Display (F variants):	Required for remotely mounted GTX		
Transponder #1 Remote Control Display	Transponder #2 Remote Control Display (if installed)		
☐ GTN 6XX/7XX	☐ GTN 6XX/7XX		
GNS 480	☐ GNS 480		
☐ G950/1000 Display	☐ G950/1000 Display		
□ GI 275	□ GI 275		
☐ Gables 7534 Controller	☐ Gables 7534 Controller		
☐ Gables 7614 Controller	☐ Gables 7614 Controller		
☐ CTL-92 Controller	☐ CTL-92 Controller		
☐ CTL-92E Controller	☐ CTL-92E Controller		
Interfaced Active Traffic System:			
□ None			
□ TCAD			
TAS/TCAS			
NOTE			
If the system includes all of the following components:			

- GTX 345R or GTX 345DR,
- G950/1000 Display, and
- TCAD or TAS/TCAS

Then the aircraft is no longer equipped with a TSO compliant active TCAD, TAS or TCAS system. Any operational requirement to be equipped with such system is no longer met.

1.5 Definitions

The following terminology is used within this document:

ADS-B: Automatic Dependent Surveillance-Broadcast

AFM: Airplane Flight Manual

AFMS: Airplane Flight Manual Supplement

ATCRBS: Air Traffic Control Radar Beacon System

CFR: Code of Federal Regulations

ES: Extended Squitter

GNSS: Global Navigation Satellite System

GNS: Garmin Navigation System

GPS: Global Positioning System

GTX: Garmin Transponder

GTN: Garmin Touchscreen Navigator

ICAO: International Civil Aviation Organization

LRU: Line Replaceable Unit

PABI: Pressure Altitude Broadcast Inhibit

POH: Pilot Operating Handbook

SBAS: Satellite-Based Augmentation System

SW: Software

TCAS: Traffic Collision Avoidance System

TIS: Traffic Information Service

TX: Transmit

Section 2. LIMITATIONS

2.1 Minimum Equipment

The GTX 33X and GTX 3X5 must have the following system interfaces fully functional in order to be compliant with the requirements for 14 CFR 91.227 ADS-B Out operations:

Interfaced Equipment	Number Installed	Number Required
Uncorrected Pressure Altitude Source	1	1
GPS SBAS Position Source	1 or more	1
Remote Control Display (for remotely mounted transponders)	1 or more	1

Table 2 - Required Equipment

2.2 ADS-B Out

The GTX 33X and GTX 3X5 only comply with 14 CFR 91.227 for ADS-B Out when all required functions are operational. When the system is not operational, DS-B Out transmit failure messages will be present on the remote control display interface, or the GTX 330 or GTX 3X5 panel display. If a Gables 7534 controller or Collins CTL-92/92E controller is being used the ADS-B equipment failure condition will be annunciated on the Gables or Collins display "Transponder Fail" while the ADS-B Out Position failure will be annunciated by the remotely installed "ADS-B POSN FAIL" Annunciator.

2.3 TIS Traffic Display with User Navigation Angle

Display of TIS traffic from a GTX 33/330 or GTX 335 is not permitted with an interfacing display configured for a navigation angle of "user".

2.4 Applicable System Software

This AFMS/AFM is applicable to the software versions shown in Table 3.

The Main GTX software version is displayed on the splash screen during start up for the GTX 330 and GTX 3X5 panel mounted units, and the External LRU or System page on the interfaced remote control display for remotely mounted GTX transponders.

Software Item	Software Version (or later FAA Approved versions for this STC)
GTX 33X Main SW Version	8.04
GTX 3X5 Main SW Version	2.60

Table 3 - Software Versions

2.5 Pressure Altitude Broadcast Inhibit (PABI)

Pressure Altitude Broadcast Inhibit shall only be enabled when requested by Air Traffic Control while operating within airspace requiring an ADS-B Out compliant transmitter. PABI is enabled by selecting the GTX to ON mode.

2.6 Datalinked Weather Display (GTX 345 Only)

Do not use datalink weather information for maneuvering in, near, or around areas of hazardous weather. Information provided by datalink weather products may not accurately depict current weather conditions.

Do not use the indicated datalink weather product age to determine the age of the weather information shown by the datalink weather product. Due to time delays inherent in gathering and processing weather data for datalink transmission, the weather information shown by the datalink weather product may be significantly older than the indicated weather product age.

Do not rely solely upon datalink services to provide Temporary Flight Restriction (TFR) or Notice to Airmen (NOTAM) information.

2.7 Portable Electronic Devices

This STC does not relieve the operator from complying with the requirements of 91.21 or any other operational regulation regarding portable electronic devices.

Section 3. EMERGENCY PROCEDURES 3.1 **Emergency Procedures** No Change. Abnormal Procedures 3.2.1 LOSS OF AIRCRAFT ELECTRICAL POWER GENERATION XPDR Circuit Breaker.....PULL Transponder and ADS-B Out functions will no longer be available. NOTE This guidance is supplementary to any guidance provided in the POH or AFM for the installed aircraft for loss of power generation. 3.2.2 LOSS OF GPS/SBAS POSITION DATA When the GPS/SBAS receiver is inoperative or GPS position information is not vailable or invalid, the GTX will no longer be transmitting ADS-B Out data. for GTX 330 installations: NO ADSB annunciator illuminated: Interfaced GPS position sources.........................VERIFY VALID POSITION For GTX 3X5 installations:

NO 1090ES TX annunciator illuminated:

Interfaced GPS position sources......VERIFY VALID POSITION

For GTX 33 and GTX 3X5R installations:

Reference Display Device documentation for applicable annunciation:

Section 4. NORMAL PROCEDURES

The procedures described below are specific only to the panel mounted GTX 330 or GTX 3X5 transponders. Cockpit Reference Guides and Pilot Guides for interfaced remote control displays will provide additional operating information specific to the displays or other traffic systems.

ADS-B Out functionality resides within the GTX transponders thereby providing single point of entry for Mode 3/A code, Flight ID, IDENT functionality and activating or deactivating emergency status for both transponder and ADS-B Out functions. Details on performing these procedures are located in the GTX 330/330D Pilot's Guide and GTX 3X5 Series Transponder Pilot's Guide.

4.1 Unit Power On

For GTX 330 installations:

GTX Mode	VERIFY ALT
NO ADSB	CONSIDERED

For GTX 3X5 installations:

GTX Mode	VERIFY ALT
NO 1090ES TX	CONSIDERED

NOTE

The NO ADS-B or NO 1090ES TX Annunciation (or associated display annunciations) may illuminate as the unit powers on and begins to receive input from external systems, to include the SBAS position source.

4.2 Before Takeoff

For GTX 330 installations:

ADS-B TX	VERIFY ON
NO ADSB	EXTINGUISHED

<u> or GTX 3X5 installations:</u>

1090ES TX CTL	VERIFY ON
NO 1090ES TX	EXTINGUISHED

NOTE

The ADS-B TX or 1090ES TX CTL must be turned on and the NO ADS-B or NO 1090ES TX Annunciation (or associated display annunciations) must be **EXTINGUISHED** for the system to meet the requirements specified in 14 CFR 91.227. This system must be operational in certain airspaces after January 1, 2020 as specified by 14 CFR 91.225.

Section 5. PERFORMANCE

No change.

Section 6. WEIGHT AND BALANCE

See current weight and balance data.

Section 7. SYSTEM DESCRIPTION

The Garmin GTX 330 and GTX 3X5 Pilot's Guides, part numbers, and revisions listed below contain additional information regarding GTX system description, control, and function.

<u>Title</u>	<u>Part Number</u>	Revision
GTX 330 Pilot's Guide	190-00207-00	Rev. G (or later)
GTX 3X5 Pilot's Guide	190-01499-00	Rev. A (or later)

Pilot's Guides for interfaced displays, part numbers and revisions listed below, provide additional operating information for the Garmin GTX 33 and GTX 3X5R.

<u>Title</u>	Part Number	Revision
Garmin GTN 725/750 Pilot's Guide	190-01007-03	Rev. E (or later)
Garmin GTN 625/635/650 Pilot's Guide	190-01004-03	Rev. E (or later)
GNS 480 Pilot's Guide	190-00502-00	Rev. D (or later)
GTX 3X5 Series Transponder G1000 Pilot's Guide	190-01499-01	Rev. A (or later)
Garmin GI 275 Pilots's Guide	190-02246-01	Rev. F (or later)
Garmin GPS 175/GNC 355/GNX 375 Pilot's Guide	190-02488-01	Rev. B (or later)

7.1 GTX TIS Behavior

The TIS Standby/Operate controls for GTX 33/330 and GTX 335/335D units only function when the aircraft is airborne.

7.2 GTX 345R/345DR and G950/1000 No Bearing Traffic Alerts

No visual indication is provided for no bearing traffic alerts. Only an aural indication of the no bearing traffic alert is provided. If an aural alert for no bearing traffic has been previously issued, a "no bearing traffic clear" aural indication will be provided once all traffic alerts are resolved.

All aural alerts are inhibited below 500' AGL, therefore a "no bearing traffic clear aural may not be heard in a landing or touch and go flight scenario.